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ABSTRACT 

The purpose of this study is to determine the magnitude of 

error introduced due to wing vibration when measuring atmospheric 

turbulence with a wind .probe mounted at the wing tip and to determine 

whether accelerometers mounted on the wing tip are needed to correct 

for this error. A spectrum analysis approach is used to determine 

the error. Estimates of the B-57 wing characteristics are used to 

simulate the airplane wing, and von Karman's cross spectrum function 

is used to simulate atmospheric turbulence. The major finding of 

the study is that wing vibration introduces large error in measured 

spectra of turbulence in the frequency's range close to the natural 

frequencies of the wing. 
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1.0 INTRODUCTION 

Progress in applying spectrum analysis in aeronautical engi- 

neering is fostering the measuring of the atmospheric turbulence 

cross spectra, especially across wing spans. Measuring the atmo- 

spheric turbulence spectrum across the wing span requires wind sensors 

mounted on the wing tips , where the sensors are exposed to error due 

to wing vibrations. Determining this error requires comparison 

between the spectrum of the wing tip velocity and spectrum of 

atmospheric turbulence. This study demonstrates a procedure to 

estimate the wing tip velocity spectrum and the error introduced due 

to wing vibration when measuring atmospheric turbulence with a wind 

probe mounted at the wing tip of a B-57 type airplane. The wing 

characteristics of a B-57 are used for modeling the airplane wing 

because NASA is currently planning to use this airplane to acquire 

atmospheric gust gradient data across the wing span. The purpose of 

this study is to determine whether the error introduced in measuring 

atmospheric turbulence is large enough to justify mounting accelero- 

meters on the wing tip to correct for the error introduced into the 

measured turbulence data due to the wing vibration. 

An introduction to spectrum analysis is believed useful in 

order to clarify the general solution technique and introduce the 

major terms of spectrum analysis. Spectrum analysis is based upon 

transferring the system from the time domain to the frequency domain. 

The form of the response of a linear system in the time 

domain to a single arbitrary input p(t) is given by Duhamel's integral: 

1 



J 

cm 

w(t) = P(T) h(t - T)dT 
-03 

t.1 1 

where h(t) is the response of the system to a unit impulse. If p(t) 

is a random input, evaluating the integral becomes meaningless because 

the integral represents only one sample of a random distribution of 

responses. To overcome this difficulty, Duhamel's integral can be 

transformed from the time domain to the frequency domain for stationary 

random inputs. The Fourier transform of Duhamel's integral is: 

WbJ) = P(w) z(w) (2) 

where the frequency response function Z(w) is the Fourier transform of 

h(t) and represents the response of the system to a sinusoidal input. 

In general, the functions in Equation (2) are complex valued functions 

and contain both magnitude and phase information. In order to study 

only the magnitude of the response in the frequency domain, the power 

spectrum of the response is defined by: 

'+,w = ww V(4 = P(W) z(w) V(w) 7(w) = +,(w) lZ(U)12 (3) 

where Qp is the power spectrum of the input. This equation is the 

fundamental result of spectral analysis and equates the response spec- 

trum to the product of the input spectrum and the square of the 

magnitude of the freq,uency response, References [1] and [2] discuss the 

derivation of the theory and contain many examples of the application 

of spectrum analysis. 



The input-output relationship of Equation (3) can be used to 

outline the general solution technique of spectrum analysis. First, 

the frequency response function, Z, is determined via the "equation 

of motion"; second, the input spectrum, G,, is defined; and,third, 

the product in the right-hand side of Equation (3) is calculated to 

obtain the output spectrum. 

The complicated system involved with wing vibrations requires 

simplification in order to become amenable to solution. The major 

simplification in determining the frequency response function is 

putting restraints on the aircraft. This study will restrain the 

aircraft to only vertical motion of the center of gravity and vertical 

wing bending. The coordinate system used in this study is shown 

in Figure 1, where the spanwise coordinate, y, is the independent 

variable and the vertical deflection, w, is the dependent variable. 

The aerodynamic forces appearing in the equation of motion are those 

calculated from strip theory and assume the wing is a flat plate 

having stiffness similar to a B-57 wing. The gust is considered to 

include only vertical wind variations. The atmospheric spectrum is 

assumed to be stationary, homogeneous and isotropic; but turbulence 

varies across the wing span. For calcuTation purposes, the von Karman 

cross spectral function as defined by Houbolt and Sen [3] is assumed. 
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2.0 ANALYSIS 

2.1 Spectrum Analysis 

The spectrum equation for a single stationary random input, 

derived in the introduction, is not sufficient for calculating the 

spectrum of the wing tip velocity for an aircraft with large wing span. 

Assuming that the aircraft experiences a single input or gust would be 

tantamount to assuming that the gust field is uniform across the span 

but random in the flight direction, as depicted by the left-hand sketch 

in Figure 2. This assumption is unrealistic for an aircraft 

with large wing span. A better assumption is that the gust is two- 

dimensional, so that it is also random across the span of the aircraft, 

as depicted in the right-hand sketch in Figure 2. The assumption of 

one-dimensional turbulence may lead to an underestimation of the 

response of the aircraft. Houbolt [4] has shown the the root bending 

moment spectrum determined by two-dimensional turbulence is signifi- 

cantly higher than the root bending moment spectrum for one-dimensional 

turbulence. The ratio 2&/L, where 2~ is the span of the aircraft and 

L is the turbulence length scale, determines the validity of the assump- 

tion of uniform spanwise turbulence; for *a/L approaching unity the 

assumption of spanwise uniformity becomes invalid. The B-57 has a wing 

span of *a = 66 ft, and Houbolt [5] recommends a length scale of atmo- 

spheric turbulence of L = 300 ft, in whi 

is large enough to warrant a two-dimensi 

the ground L becomes smaller making the 

5 

ch case the ratio *a/L = 0,22 

onal spectrum analysis. Near 

above argument even stronger. 



FIGURE 2 ONE-DIMENSIONAL AND TWO-DIMENSIONAL TURBULENCE ENCOUNTER [4] 

Assuming a linear system with a continuum of random stationary 

inputs, the response in the form of Duhamel's integral is: 

w(t) = 

II co 

I I 
P(Y,T) h(y,t - -c) dT dy (4) 

-g -a, 

The Fourier transform of the above equation is: 

I 

R 

w(w) = p(Y,w) Z(y,u) dy (5) 
-!2 

where the frequency response function Z(y,w) is a function of both 

frequency w and input location y. This study will define Z(y,w) as 

the velocity of the right wing tip due to a sinusoidal gust of 

frequency w located at y along the wing and w(t) as the velocity of 

the right wing tip due to gust excitation along the entire wing. 

The output power spectrum as defined by Equation (3) is 

R R 

Gw(d = NW) Wu) = 
I J 

$p(Y1~Y2,w) zb',d ~(Y,,w) dy, dy2 
-R -R 

6 (6) 



The cross spectrum is defined by: 

~p(Y,,Y,~W) = P(Y,'W) p(y2 

Then it is true for all cross spectra that 

tJp(Y,'Y*'d = NY, d-4 po 

= po P(Y*,w) 

= Pp(Y2sY,d 

(7) 

(8) 

Because the domain of integration is symmetric, an appropriate choice 

of the limits of integration can be made so that the integrand can 

be written as: 

4p(Y,¶Y*'w) Z(Y,'d aY*d.d + cp,(Y,s Ypd Z(Y*,w) Jr (Y,‘W) 

.= Gp(Y,'Y2'd Z(Y,'d I(Y*d + cp,(Y,,Y*dd) Z(Y*dd Z(Y,'W) 

= ~,(Y,'Y*'d Z(YpJ.d aY,d + op(Y1'Y*dd Z(Y,'d 3Y2'4 

= *Rd@p(y1y~2 d.d Z(Y,'d aY*'dl (9) 

Therefore the symmetry involved in the domain of the integration and 

the products of conjugate pairs permits the integral to be rewritten as: 

@,(d = 2Re @,(Y,,Y,,w) Z(Y,~ 7(y2,0) dyldy2 

I 
(10) 

7 



This equation is completely general and requires only that the inputs 

be stationary. It is reasonable to expect that the spectrum of the 

input (in particular, turbulent input) is isotropic; in other words, 

the spectrum is a function of the separation distance [meaning 

Q,(Y, 3Yp) = ~,(lY, - y21)] only and independent of direction. This 

assumption can further simplify the integral by making the variable 

substitutions s = y, - y2 and y = y2 and interchanging the order of 

integration so that: 

lim *' 

I [J 

R-S 

@,(w) = s*+o Gp(s ,d 2% ‘;i(y ,d Z(Y + s ,a> dy ds 
S* -R 1 (11) 

This equation is the final form of the spectrum equation that 

will be used in this study. Note that $p(s,w) is the cross spectrum of 

the inputs, which within this study is the cross spectrum of atmospheric 

turbulence. The cross spectrum of turbulence represents the contribu- 

tion of the frequency w to the covariance of the vertical velocity at 

two points along the wing span separated by a distance s. 

2.2 Mechanical Analysis 

Consider a nonuniform wing (chord, beam stiffness, and mass 

varying along the span) free to move and bend vertically and subjected 

to a sinusoidal vertical gust at a spanwise element of width A centered 

at y = y*. The balance of forces then requires that 

Fs = -FI - FM + FG bh'*) ma 

8 



where Fs is the force due to beam stiffness, FI is the inertia7 force, 

and FM and FG are aerodynamic forces due to translatory wing motion and 

due to vertical gust, respectively. The function 6(y,y*) selects the 

Portion of the wing which is subjected to the gust and is zero every- 

where except between y * + A/2, where it has the value of unity. The 

theory of strength of material states: 

a2 
Fs=- - 

1 1 
EI a2w (73) 

ay* ay* 

where EI is the beam bending stiffness and w is the vertical deflection 

of the wing. Newton's law gives: 

FI = mti (74) 

Theodorsen in his famous NACA report [6] showed that the force due to 

wing motion for a two-dimensional wing is: 

F, = rpb*GS + 2vpVb C(k) ti (75) 

where V is the mean flight speed, p is the density of the flight medium, 

and b is the semi-chord of the wing. The Theodorsen function, C(k), is 

a function of the reduced frequency (k = wb/V) of the motion. Both 

References [2] and [7] develop and apply the Theodorsen function. 

Defined in terms of the Bessel function, the Theodorsen function is: 

C 
= J,(J, + Yo) + Y,(Y, - Jo) - i(YIYo + JIJo) --___ (76) 

(J, + Yo)* + (Y, - JoI2 

9 



Note that the argument of the functions is k, the reduced frequency of 

the motion. The lift due to a gust acting on a two-dimensional wing 

with semi-chord b as reported in [2] is: 

F G (77) 

where K(k) is the Kussner function. It too is dependent on reduced 

frequency of the gust. In terms of the Theodorsen function and Bessel 

functions, the Kussner function is defined: 

K = C(Jo - iJ,) + iJ, (78) 

The forces may be added to yield the partial differential equation: 

. . = mm - rpb*W - 2rpVb C(k) \;r + 2TpV*b K(k) ; 6(y,y*) 

(19) 

The boundary conditions are: 

w"(a,t) = w"'(R,t) = wy-!L,t) = W"'(-!L,t) = 0 (20) 

meaning no shear or moment at the wing tips, while the time dependence 

will be taken to be periodic, as discussed later. 

Assume the vertical deflection w(y,t) may be expanded in its 

natural modes,. {~i3~=,, as: 

w(Y,t) = 2 rliIt) @i(Y) (27) 
i=l 

10 



Substitution of the solution expanded in its natural modes into the 

governing Equation (19)yields, after some algebra, an equation for the 

spatial dependence (the free vibration equation) and another for the 

time dependence: 

for -2 -c y < R (W 

where wi is the natural frequency of the ith mode. The boundary condi- 

tions of the differential equations are: 

r+ “‘(R) = $“‘(-a.) = (Ii “(a) = @Ii “(4) = 0 (23) 

which corresponds to the shear and bending moment being zero at the ends, 

as is the case for free ends. 

The natural modes are orthogonal [2] because of the choice of 

boundary conditions so that: 

J 
R 

(EI$ ” 
-2 

r R 
I 

MiUi2 for i=j 

)" $jdy = wi2 
I 

m@i$jdy = J 
-R 

i 0 for i #j 

(24) 

Then by using the orthogonality property of the modes, the 

differential Equation (19)becomes a system of linear differential equa- 

tions in terms of the natural modes: 

M,u,*r7, = +/-in - rPbR* j$, ‘nj’ij - *~PVbR C(k) j~l ~nj~j 

+ 2npV2bR K(k) w pi a( 

11 

(25) 



Where 

II 

linj = 

J 

R 

a24n4jdY and g = 
nj 

I 
a4’n’$jdY 

-R -R 

are coefficients of the aerodynamic cross terms, the weighting function 

of the integrals a(y) = b(y)/bR is the semi-chord distribution. We 

now introduce the variables: 

wb 
k+ and s = Vt 

bR 
(27) 

and assume sinusoidal output to sinusoidal input; in other words, we 

assume the variables are of the form u = ue iks and n, = Yi,e iks 
. After 

* substitution of the above variables and division by IT~V Se iks, the 

system of linear differential equations becomes a system of linear 

algebraic equations: 

2- N N 
PnQn*Fn = k ~nEn + k* C A,jFj + *ik C(k) jgl BnjSj 

j=l 

+ 
*bR K(k) 

S ~+.JY*) ah*> 

?-tbR where fin = - V 

A bR'nj =- 
nj S 

- 

B 
nj 

_ bR:nj 

(28) 

12 



un 
Mn =- 

d$ 

% V 
G =-I-- bR ' 

This is the final form of the equations which will be used in 

the program. Many of the constants of the equations are calculated by 

integrating products of the natural modes by different weighting func- 

tions, and they can be determined as soon as the free vibration problem 

has been solved for the different modes. The solution rn = Tn/bR(V/ii) 

represents the amplitude of the modal response of the deflection of the 

wing to sinusoidal gust with unit change in angle of attack normalized 

by the reference semi-chord. The solution, 5, = $.,e 
iks , may be 

differentiated with respect to time to give the amplitude of the wing 

tip velocity of the modal response: 

& % = 
ik %L= -jw!& 

bR u U (29) 

For the particular problem of this study, the frequency response 

function is defined as the velocity of the right wing tip due to a 

sinusoidal gust located at y* along the wing. The frequency response 

function is then: 

N 7-j (Y*s~JJ> 
Z(Y*,W) = iu C 

j=l 
a (30) 

This is the definition used in the spectrum analysis part of the program. 

13 



3.0 ~IMERWI PRO~HNFK 

The numerical procedure is basically divided into three sub- 

routines. The first subroutine solves the free vibration problem and 

determines the natural bending modes and frequencies of the wing. The 

second subroutine solves the forced vibration problem and determines 

the frequency response function of the wing to a sjnusoidal gust at a 

point along the span. Finally, the third subroutine performs the arith- 

metic in the power spectrum equation and determines the wing tip velocity 

spectrum. 

3.1 Free Vibration: Structural Character of the Wing 

The eigenvalue problem solved by this program is for a wing 

vibrating in only bending modes in free space (meaning free ends, i.e., 

moment and shear are zero at the wing tips). 

The differential equation is: 

(EI@“) ” = mw2+ for -2 f y 2 R (31) 

with boundary conditions: 

(#p’(R) = $“(J7) = $)“‘(-g) = ()“(-J7) = 0 (32) 

where 4 is the natural mode or eigenfunction and w is the natural fre- 

quency or eigenvalue. 

The coefficients of this equation are EI, the bending stiffness 

of the wings, and m, the mass per unit length, and both are a function 

14 



of y. Both EI and m are defined symmetrically for most wings, and this 

implies that the solution of the differential equation should be either 

symmetric or antisymmetric. The.program takes advantage of this so that 

the range of integration is cut in half (i.e., the problem needs to be 

solved only for 0 2 y 5 2). The boundary conditions must then be 

restated at the origin (or the midspan of the airplane) to be those for 

a symmetric or antisymmetric function dependent upon whether an even or 

odd mode is being investigated. The conditions at the origin for a 

symmetric function are: 

c)‘(O) = c$“‘(O) = 0 (33) 

while the conditions for an antisymmetric function are: 

O(O) = q’(o) = 0 (34) 

These will be the boundary conditions, along with those at the wing tip 

(Y = RI * 

If the eigenvalue of the differential equation is specified, 

the problem is reduced to a linear fourth order, two-point boundary 

value problem, and a shooting method IlO] can be used to.determine the 

numerical solution. The first step of the shooting method is to reduce 

the single fourth order equation to a system of four first order equa- 

tions. For Equation (31) the system becomes: 

15 



mm2 -2EI' -EI" ~- 
EI ’ EI EI _ 

and boundary conditions for a symmetric mode are: 

@2(O) = $4(O) = @,(a = @,W = 0 

(35) 

(36) 

If all the initial conditions were given, a Runge Kutta scheme could be 

used to determine the numerical solution, but because the solution must 

match the boundary conditions at y = R, a shooting method must be used. 

The shooting method estimates the complete set of initial conditions 

and then uses a Runge Kutta scheme to determine the solution of the 

initial value problem. The value of the solution of the initial value 

problem at y = R is compared with the boundary conditions at y = R for the 

two-point boundary value problem. The estimate of the complete initial 

condition is improved and the procedure is repeated; in this way the 

complete set of initial conditions is determined so that the solution 

to the initial value problem has the correct value for the boundary 

conditions at y = R. Fortunately, for a linear system the complete set 

of initial conditions can be improved to the correct initial conditions 

after one trial. This will be shown true later. Because the differen- 

tial equation is linear, it can be shown [8] that there exists a vector 

base, I@~=, , of the solution of Equation (35). Then each solution 

16 



of Equation (35)for the boundary conditions indicated is a linear combi- 

nation of the base solution: 

5= 5 qc 
i=l ii 

(37) 

(38) 

By choosing four linearly independent initial conditions, C$l:=, is 

guaranteed to be a complete base. A convenient choice of linearly 

independent initial conditions is: 

G,(o) = . , Jl,(O) = 

'0 

; T33(o) = O 
1 

\ 0 

and g4(0) = 

0' 

0 

0 

1, 

‘(39) 
A base of C"i}4=1 defined by the above initial conditions and the 

differential equation is commonly called a fundamental base or the fun- 

damental solutions. The boundary conditions are used to determine the 

constants {Ci14=, of Equation (38). In the case of the even mode, the 

{Ci}4=1 must satisfy the system of equations: 

17 



J112(0) $22(O) $32(O) $42(O) 

$4(O) @24(O) $34(O) *44(O) 

$13(R) $23(a) $33(a) $43(O) 

+,4(R) $24(a) $34(R) $44(O) 

c1 0 

C2 0 
= 

c3 0 

c4 0 

(40) 

If the problem was a simple two-point boundary value problem, the 

boundary conditions would be nonhomogeneous. Then the system of linear 

Equations (40)would be nonhomogeneous and the'{Ci}:zl could be deter- 

mined after the fundamental solutions. cj"i}4=, were determined from one 

trial of the shooting method. An eigenvalue problem by definition 

requires that the boundary conditions be homogeneous, and this leads to 

a homogeneous system of linear Equations (40)for the {Ci}izl . Linear 

algebra theory requires that the determinant of the coefficient matrix 

vanish in order for the homogeneous system to have a nontrivial solu- 

tion. This determinant: 

+12(O) *22(O) $32(O) $42(O) 

$14(O) $24(O) $34(O) $44(O) 
D(w) = 

$13(R) +23(R) $33(R) $43(a) 

$4(fi) $24(R) $34(R) @44(a) 

(41) 

is commonly called the characteristic determinant, and for. {Ci}4=1 

to be determined it must vanish. Note that the determinant is a function 

of W, the unspecified parameter of the differential equation. 

18 



Reference [9] shows that the characteristic determinant is an analytic 

function of w and the eigenvalues of the differential equation are the 

zeros of the function D(w). When w is an eigenvalue of the differential 

equation, the characteristic determinant vanishes and the boundary con- 

ditions can be satisfied as a linear combination of the four fundamental 

solutions. Note that the solution of the system of linear equations 

for the {Ci>4=, is not unique; therefore an extra condition must be sup- 

plied. In this study we demand that the natural modes have the value of 

unity at the wing tips, which becomes our extra condition imposed on 

the CCi}4=1 . The values of the derivatives of the fundamental solutions 

appearing as elements of the characteristic determinant are obtained by 

solving the differential equation by a Runge Kutta method. Note that 

some of the terms in the determinant are already known from the defini- 

tion of the fundamental solutions. Substituting in the determinant for 

these values and simplifying yields: 

D(w) = 

0 1 0 0 

0 0 1 0 

$,3(R) $23(a) $33(R) @43(R) 

$4(R) $24(R) $34(a) $44(R) 

The characteristic determinant is now 

@,3(R) $43(E) 
= 

(42) 

3 function of only the 

first and fourth fundamental solutions because these are the only two 

fundamental solutions that satisfy the conditions at the origin for a 

symmetric function. The program takes advantage of this and determines 
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only two fundamental solutions. Reference [9] further discusses the 

theory of linear differential equations. 

The general solution procedure can now be outlined. First, 

the eigenvalue is estimated; then the two fundamental solutions are 

determined by a Runge Kutta Fehlberg order seven scheme. The value of 

the characteristic determinant is calculated from the fundamental 

solutions. A search routine checks if the eigenvalue is bracketed 

between the current estimate and the previous estimate. In this case, 

the program is directed to a bisection routine to improve the brackets 

or continues, taking another step along the frequency line and using 

this as its next estimate of the eigenvalue. After the eigenvalue has 

been determined, the natural mode is normalized by a unit displacement 

at the right wing tip. The new mode is integrated with previous modes 

determined to calculate the aerodynamic cross terms. The program then 

steps along the frequency line for its first and second estimates of the 

next eigenvalue. Another example of this technique for solving eigen- 

value problems is found in Reference [lo]. 

The calculation was tested against the uniform beam and was 

found to be very accurate. Three runs were made for different EI 

distributions, and the program converged very quickly for the lower 

modes. Figures 3 and 4 show estimates of m and bR for the B-57 used in 

all the cases run. 

The most difficult parameter to estimate is the beam stiffness, 

EI. A static analysis was used to estimate the beam stiffness, assuming 

a loading on the B-57 wing which would be used during extreme operations 

and a load factor of 10 g. Appendix B shows the details of the analysis; 
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FIGURE 4 DISTRIBUTION OF SEMI-CHORD ACROSS THE SEMISPAN OF THE WING 
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the results of the analysis show that the beam stiffness is approximately: 

EI = 9 x lo8 for Y 5 WI 

EI = 9 x lo7 for Y > IY (43) 

This wing is referred to as the "standard wing" throughout the rest of 

this study. Its natural modes and frequencies are shown in Figure 5. 

From an in-flight experiment with the B-57, NASA/Langley Research Center 

determined that the natural frequency of the first bending mode of 

the B-57 is approximately 7 Hz. In this study, a trial and error 

method was used with the program to determine the beam stiffness 

necessary to have a first bending mode at 7 Hz. The beam stiffness 

was found to be: 

EI = 3 x log for Y 5 1111 

EI = 3 x lo8 for Y > WI (44) 

The wing with this beam stiffness distribution is referred to as the 

"stiff wing." For comparison purposes, a third beam stiffness with 

distribution 

EI = 9 x lo6 for Y < IllI 

EI = 9 x lo5 for Y > WI (45) 

was run. Figure 6 shows the natural modes and frequencies of this 

"flexible wing." 
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Natural frequency 

Mode (Hz) Reduced natural frequency 

1 4.37 0.072 

2 

3 

12.06 

0.385 

0.666 

Distance along semispan (ft) 

FIGURE 5 NATURAL MODES AND FREQUENCIES FOR THE STIFF WING 
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Natural frequency 
Mode (Hz) Reduced natural frequency 

1 0.44 0.0072 

2 1.20 

3 2.33 0.0385 

u 
aJ 
N 

Distance along semispan (ft) 

FIGURE 6 NATURAL MODES AND FREQUENCIES FOR THE FLEXIBLE WING 
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3.2 Forced Vibration: Frequency Response Function 

The final form of the equations for the frequency response 

function of the wing tip deflection due to a sinusoidal gust have been 

obtained by separating variables, integrating the spanwise influence, 

and assuming sinusoidal form for the solution. Remaining yet unsolved 

is a system of linear equations for the amplitudes of the different 

modal responses. The system of equations is: 

[~n2 - k2] ~nSn - ~ [k2Anj - k C(k) Bnj] sj = ARK * K(k) I, 

(46) 

w.b 1 R where "i = - * v ' reduced natural frequency of mode 

I 

R 
Vi = m$i$i dY/TpbRS i normalized general mass 

-2 

bR 

I 
!2 

A =- a2Qi $jdY 
bR 

ij S and B..=S 
1J 

-2. I 

R 
a4iGjd.Y ; normalized 

-2 

aerodynamic cross terms 

The unknowns, Fi = li/bR(V/u), are normalized amplitudes of the 

modal wing tip deflection in terms of the reference semi-chord, bR, and 

the magnitude of the disturbing force, CL = i/V. The remaining terms are 

the reduced forcing frequency, fij, and the gust location, y*, which for 

this study are spaced evenly at 38 locations along the span. The above 

system of equations is solved by Gaussian elimination for each forcing 

frequency and gust location. Fortunately, the coefficient matrix does 

25 



not change for each gust location , and the coefficient matrix is reduced 

only once in subroutine GAUSS for each forcing frequency. The nonhomo- 

geneous part is reduced for each gust location and the amplitudes are 

determined by back substitution in subroutine BACKS. 

Careful examination of the cross terms, Aij and Bij, shows that 

they vanish when the integration is of the product of an even.mode and 

an odd mode. This means that the linear system of equations becomes 

uncoupled between even and odd modes , and the response of the system to 

a sinusoidal input as separated into response of even modes and response 

of odd modes can then be examined. Obviously, the response of the even 

modes to a gust located at y is the same as the response to a gust 

located at -y. The response of the odd modes to a gust is antisymmetric. 

In other words, the response of the odd modes to a gust at y is the 

negative of the response at -y. The system of linear equations is 

solved for gust locations on only half of the wing. Shown in Figures 

7-11 are the plots of the frequency response function versus the 

reduced frequency of the gust for several gust locations along the 

nonuniform wings. 

3.3 Spectrum Equation: Wing Tip Velocity Power Spectrum 

The final form of the output power spectrum due to a continuum 

of stationary, homogeneous, isotropic input is obtained from Equation 

(ll),which can be integrated numerically using the trapezoidal rule to 

yield: 

$w(S,w) = Gp(O,~) E ZiZi + x $,(jA,w) 2Re 
j=l 

(47) 

26 



/---- --Flexible wing 

/-Standard wing 

0 
. 

0 

1 I I I I I 
0.001 0.01 0.1 1.0 10. 

WbR Reduced frequency 7 

0 

Gust location at y (0.86 ft) 

FIGURE 7 FREQUENCY RESPONSE FUNCTIONS DUE TO GUST EXCITATION AT 
0.86 FEET FROM MIDSPAN 
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FIGURE 8 FREQUENCY RESPONSE FUNCTIONS DUE TO GUST EXCITATION AT 
14.76 FEET FROM MIDSPAN 
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FIGURE 9 FREQUENCY RESPONSE FUNCTIONS DUE TO GUST EXCITATION AT 
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FIGURE 10 FREQUENCY RESPONSE FUNCTIONS,DUE TO GUST EXCITATION AT 
23.44 FEET FROM MIDSPAN 
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where N is the number of gust stations and A is the gust station width. 

The spectrum program determines the wing tip velocity spectrum, there- 

fore, Zi must represent the velocity at the right wing tip due to a 

sinusoidal gust at station i. The frequency response function is 

defined in the program as: 

z=+ E, 
j=l 

where NM is the number of elastic modes considered. The summation 

includes the response of only the elastic modes; the response of the 

rigid body mode is not included in the summation because the navigation 

system, located at the airplane's center of gravity, should be able to 

subtract the motion of the center of gravity from the turbulence data 

taken at the wing tip. There is a difference between the motion of the 

center of gravity and the motion of the rigid body mode; the center 

of gravity motion includes the motion of the even modes at the center 

of gravity. An attempt should be made to filter out the elastic mode 

motion from the center of gravity motion before correcting the turbulence 

data because the elastic mode motion at the center of gravity can be 

180 degrees out of phase with the elastic mode motion at the wing tip 

and can therefore introduce a larger error in the turbulence data. 

This study will assume that the motion of the center of gravity measured 

by the aircraft navigation system has been filtered so that it contains 

only the rigid body motion of the airplane before correcting the turbu- 

lence data. In this study wing vibration is defined as the motion of 

only the elastic modes of the wing. 
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Note that the frequency response function is normalized by the 

gust magnitude, u, and therefore represents the velocity at the wing 

tip due to a unit sinusoidal gust. The input spectrum is taken as 

von Karman's cross spectrum function of atmospheric turbulence [3] and 

is normalized in the program by the root mean square of the turbulence, 

0 2 
u - Therefore, the wing tip velocity power spectrum is normalized by 

the root mean square of the turbulence. Reference [2] gives further 

examples of spectrum analysis problem solving. 
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4.0 RESULTS AND CONCLUSIONS 

A.study pf the frequency response function will aid in under- 

standing the power- spectrum. An examination of the frequency response 

in the high. frequency (reduced frequencies above one) domain ,displayed 

in Figures 7-11 shows that regardless of gust location, the wing tip 

velocity vanishes rapidly with increasing gust frequency. Physically, 

the wing is expected to respond less to higher frequencies because the 

higher modes have low response amplitude. Another gust location 

independent trend in the frequency response function is the extreme 

maximum at low frequency, also displayed in Figures 7-11. This is 

physically explainable because the gust frequency becomes close to the 

natural frequency of the wing. 

The more interesting trends of the frequency response functions 

of the wing are the gust location dependent trends. Figures 7-11 show 

the frequency resonse functions for both the standard and the flexible 

wing excited at five different locations along the wing. The locations 

of the gust are marked along the abscissa in Figures 5 and 6. Figure 7 

shows the response of the wing due to a gust near the midspan. 

Because the odd modes have their nodal point at the midspan, they 

should not respond as much as the even modes. The response is particu- 

larly clear in the curve for the standard wing where only the first and 

third elastic modes have large peaks. The response of the flexible wing 

is not quite as clear as the response of the standard wing because its 

natural frequencies are so close together the curve tends to be washed 
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out. Figure 8 shows the response of the.wing due to gust excitation at 

14.76 feet from midspan. This gust location is at the maximum of 

second elasticmode deflection and close to the nodal points of the 

first and third elastic modes. The response curve should be like that 

shown for the standard wing. The frequency response curve for the 

flexible wing shows a much more pointed maximum than the response curve 

for the flexible wing shown in Figure 7 because in Figure 8 only the 

second elastic mode is participating while.in Figure 7 the maximum 

consists of both the first and third elastic mode responses. The first 

elastic mode has its nodal point approximately 16.5 feet from the mid 

span. Figure 9 shows the frequency response function due to gust 

excitation at this point. The response of the flexible wing shows a 

pointed maximum characteristic of low first elastic mode participation, 

while the third mode shows a great deal of participation since the 

excitation is at its maximum deflection for the mode. As expected, the 

standard wing shows a very small peak for its first mode response. 

Figure 10 shows the response curve due to gust excitation near the 

nodal point for the second elastic mode. The response of the flexible 

wing shows a local minimum for the second elastic mode response, while 

the first and third elastic modes show peaks for their response. The 

standard wing shows no response around the second elastic mode. 

Figure 11 shows the response curve for gust excitation at 26.92 feet 

from mid span, which is near the nodal'point for the third and fourth 

elastic modes. The curve shows minimum participation of the third and 

fourth modes for both standard and flexible wings. 
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The wind velocity measured at the wing tip is the sum of the 

turbulence, U,(t), at the wing tip and the velocity of the wing tip, 

U,(t), due to wing vibration. The measured wind velocity is then: 

urn(t) = u,(t) + u,(t) 

The correlation function of the measured wind is: 

I 

T 

R,(t) = ;z & urn(t) V,(t + -r> ch 

-T 

lim 1 
= T-+=n uw(t + .T> + u,(t) up(t + T) 

+ u,(t) u,(t + T> + u,(t) u,(t + ‘cl 1 ch 

= Q(t) + Rp(t) + Rwp(t) + Rpw(t) 

The Fourier transform of the correlation equation gives the 

spectrum equation 

@m = @w + Gp + owp +, epw 

Since @wp = Yj 
Pw' 

the equation can be simplified: 

4m = 9, + a, + 2Rw wP 

(49) 

(50) 

(51) 

(52) 

where Gp is the power spectrum of turbulence at the wing tip and $w is 

the power spectrum of the wing tip velocity. Figures 12-15 show 
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the wing tip velocity power spectrum and, for comparison, the atmo- 

spheric turbulence power spectrum. The cross spectrum $wp contains 

phase information between the wing tip velocity and the atmospheric 

turbulence velocity. The equation for 4 
wP 

used in the program is: 

I 
2R 

4 = wP $pb) Z(fi - s) ds 
0 

The relative error introduced due to wing tip velocity is: 

(53) 

(54) 

Figures 16-21 show this relative error as a function of frequency 

for the three different wings and different turbulence length scales. 

The flexible wing shows a large relative error throughout all the 

lower frequencies. An airplane having these wing characteristics is 

not recommended for measuring atmospheric cross spectra across its wing 

span. The standard wing shows a large relative error close to its first 

natural bending frequency. The first natural frequency can be close to 

the lower frequencies of atmospheric turbulence (approximately 0.04 Hz) 

if the turbulence length scale is small enough. For large turbulence 

length scale, the maximum error introduced due to wing vibration of the 

standard wing is reduced but still amounts to some 50 percent.more over the 

turbulence spectra scale as wL/V and; hence, for higher length scales the 

frequency of the wing vibration is out of the frequency range which con- 

tains significant turbulence energy. If the wing has characteristics 
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FIGURE 21 RELATIVE ERROR IN MEASURING TURBULENCE WITH LENGTH SCALE 
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of the standard wing, it is recommended that accelerometers be mounted 

on the wing tip to obtain accurate measurements of atmospheric turbulence. 

The stiff wing shows a smaller relative error than the standard wing and 

the range of larger error is slightly shifted to the high frequencies. 

The relative error still reaches 50 percent and for small turbulence 

length scale can get close to the lower frequencies of atmospheric 

turbulence, If accurate measurements of atmospheric turbulence fre- 

quencies on the order of 0,22 Hz are desired when using an airplane with 

the stiff wing characteristics, it is recommended that accelerometers be 

mounted on the wing tip, This study concludes that to measure atmospheric 

cross spectra across an airplane wing span, a stiff wing is required and 

that to measure accurately the whole range of the atmospheric turbulence 

spectrum, accelerometers mounted on the wing tips are required. 
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APPENDIX A 

USER'S GUIDE 

This appendix contains details of the computer code used for 

this study. The four flow charts illustrate the complete computer code, 

the free vibration subroutine, the forced vibration subroutine, and the 

spectrum analysis subroutine. Following the charts is an explanation of 

how to modify the computer code for different aircraft. Finally, the 

complete computer code listing is provided. 
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A.1 FLOW CHART OF THE COMPLETE PROGRAM 

Total Number of Mode To Determine 
- Number Modes To Determine Mode On 

1 Free Vibration Program 1 

'i - Frequency 

Mi - Generalized Mass 

@i - Mode 

A ij & Bij - Aerodynamic Cross Product 

Forced Program 

k- Driving Frequency 
zi (Y> - Response Of i Mode To Gust 

I-5 Input/Output Spectrum Program 

1-J Program 

k- Frequency 

@W - Power Spectrum Of Wing Tip Velocity 
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A.2 FLOW CHART FOR THE FREE VIBRATION PROGRAM 

NN r 

v 
SUBROUTINE STRK 

1. Determines Coef. For Runge-Kutta 
2. Fixes Nodes and Wing Plan X, RA 

A,B,C,CH 

SUBROUTINE RK7 

Integrates Differential Equation 
EL & EU - Error Bands 

Y - Solution 
X- Node Location 

MAIN 

NC - Number of The First Mode To Determine i 
N - Number of Modes To Determine 

NN - Number of Modes To Determine The Mode On 
W - Guess Of Frequency 

H - Step Size 

NC.N,NN,W,H 

v 
SUBROUTINE SZERO 

c Steps Along Frequency Line Until Brackets Root 
e F - Value of Characteristic Determinant 

I 
w1 W2 v 1 W2 NN. YY 

SUBROUTINE. 
BISEC SUBROUTINE DEMODE 

and Determines Mode 
SUBROUTINE 

YY 

FUNCTION SIMPSON 
SUBROUTINE FUN 

SUBROUTiNE COF 
Sets Up Integration 

FUNCTION SET 

W - Natural Frequency 

GM - Generalized Mass 

RP - Modes 

n Subroutine 

t 

Variables Passed 
yy Between Subroutines 
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A.3 FLOW CHART OF THE FORCED VIBRATION PROGRAM 

SUBROUTINE DO 

Elimination 
On Coef. Mat. 

V 
SUBROUTINE 

BACKS 
Reduces Non-horn .- 
Victor and Back 

Substitute 

C,D 

SUBROUTINE COF 

1. Sets Up Coef. Matrix: C 
2. Sets Up Gust Force: D 

A 

RK CC, RKK 

1 
Fun CC & RKK 

0 Input/Output 

n Subroutine 

t 
Variables Passed Between Subroutines 

RK 
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A.4 FLOW CHART OF THE SPECTRUM PROGRAM 

,’ 

INPUT 

cm 

I 

MAIN 
TL - Turbulence Length Scale 

N- Number of Driving Frequency 
Number of Gust Location 
Driving Frequency 

RR - Total Response 
1. Reads Driving Frequency 
2. Outputs RK & RR 

SUBROUTINE 
Coeff. l&2 
Setup Coef. 

For Bessel fctn 
approximation 

SUBROUTINE SPEC 
Determines Spectrum 

of Wing Tip Velocity 

FUNCTION TSPEC 
Determines Atmospheric 
Cross Spectrum Between 

Gust Location 

1 

FUN BSL2 and BSLl 
Evaluates Modified Bessel Function of Second Kind 

5/6 and L'S/6 Order 

Does Polynomial Evaluation 

0 Input/Output 

]Subroutine 

t 
RK Variables Passed Between Subroutines 
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A.5 PROGRAM MODIFICATION 

The computer code is actually three programs: the free vibra- 

tion program, run on the IBM 360 at The University of Tennessee, 

Knoxville; and the forced vibration and spectrum analysis programs, 

both run on the PDP 11 at The University of Tennessee Space Institute. 

The input-output data format is compatible between programs, and all 

three programs may be changed and extended. Listed below are changes 

that must be made to each program for different wings. 

The free vibration program was written for application to any 

wing. To adapt this program to a different wing, the function EI, 

specifying bending stiffness along the span, must be changed. Also, the 

functions EIP and EIPP, which are the first and second derivatives of 

EI, might need to be changed if EI is more complicated than a step func- 

tion. The array RA, which defines the wing's semi-chord along the span, 

and the array X, which defines the mode position, must be changed. 

They are defined in subroutine STRK. Finally, the function RM, the mass 

per unit length, must be corrected. 

The forced vibration program is extremely simple to modify for 

other aircraft. The array X, specifying the gust locations, must be 

changed in MAIN. Also, in MAIN the constants BR, reference semi-chord; 

S, surface area of wing; and U, mean flight speed; must be changed to 

fit the airplane. Finally, the function RA, wing semi-chord distribution, 

must be altered. 

There are only two constants that must be changed to modify the 

spectrum analysis program for other airplanes. These are the reference 
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semi-chord, BR, and the mean flight speed, U. This program is most 

likely to require change due to a new distribution of the atmospheric 

turbulence cross spectrum, which will require that function TSPEC be 

rewritten. The program can be modified to give the power spectrum of 

the root bending or wing deflection at any point of the span by 

redefining the response function, the array Z. 
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A.6 PROGRAM LISTING 

CCtMMOWiC0AT/~EE 
E%=3000000000.0 
CALL 01 
CALL D2 
CALL D3 
S’lwJ 
END 

StJtiRUUTIiJE Dl 
C*** Ttlls PRUCRAM IS USED FOR DETERMING CING’S NATURAL 
C P‘REOUEiJCY AND MODE. 
C 
C 1T UStS A bilSECTIUN LlKE METHUD 1'0 1MPHUVE THE GUESS 
C UN THE Fr(EOUENCY ArrD MAKES THE CtiARACTEHISTlC DETERMINANT 
C VANISH. 
C 
C RUIJGE-KUTTA Ft;HLbERG 7L8 IS USED TO DETERMINE SDLUTICJN 
C TO i~lFFEt<~IJTIAL .E(lN 1T HAS VAlRAtSLE SIZING bETiJEEN 
C F'IXtU NUDES. 
C 
C SIi~IPSlJNS METHOD IS USED TO lNTEGt3ATE FOR THE AREUDYNAMIC 
C CHUL5 TERHS ANU GENEHALlZED MASS. 
C 
C TllE PRUCkAM dAYbE AUUPTELI DY CttANGlNG FUN...%1 

: 
('I'IIE FUiJCTll,d bI-SCH16lrrG TtlE DlS'IIIIGUTION UP THE PRUIJUCT 
YOIJNc;~s ELASTIClTY AND SECT~!JNAL nAsS MuEhT, IF SEI Is 'I'U 

C ttAvt DERIVATIVES UP Tu 'lHE SECONIJ UHL)EH FUN . ..FUNEV NEEDS TO BE 
C C~iArltiED TIJ IIICLltUE TtltN II’J THk DIFF’tR~,NTIAL EQN. THE WING 
C PLAEJ AKtlAY, KR, WILL NttD TIJ BE CtiAI1GED. 
C***NC='I'IIC; tiljNt~F;R uF MllDE TU START CALCULATING 
CS**W=I’iiE C'HIST GlJtSS Ok’ THE NATUHAL FREQUENCY OF THE NC MODE 
C***H=S'l'lr:P SlZE t;'OH SEAHCH I<UUTfrJE 
CS**N=Tu’tAL NUMtJER uF MODES TO CALCULATE 
C***Nri=iJUdbEH OF NUDES TO CALCULATE MODE ON 

HtAL*8 W,H 
NC=2 
tl=Z. 000 
b;=4.(il)o 
N=4 
Ni’I=151 
CALL STHKINN) 
CALL SZEtw(W,H,N,NC,f~N) 
RtiTiJRN 
EN U 

57 



SUDROUTINE SZERtJ(W,tl,N,i~C,NN1 
C THIS SlJnKUUTItJE STEPS &LONG THE FHEOUENCY DitMAIN UN'I'ILL 
C 1'1 i$HACkErS THE NATUHAL FRL(rUENCY AND THE CALLS A BlSCCTIQN 
C HI.IU'I'IIJE AND A S&CANT HOU’I’I~JE Tu IEtYHuVE THE WlDTH UC' THE BRACKET 

: 
THE SUfjKUUT.lNk, FIkALLY CALLS SUi3.. .DMUDE TO DETERMlNuE THE 
MUDE, AND TtIF;N CALLS COEF TU SET UP THE INTERGHATIUNS OF MODES 

C ArrD TrtElR PKciDUCTS. 
C*rC*+ E;L b EIl=EHtiiJR bOlJNDS FUR HUl\rGE KUlTA 
C**** rll & ti2zDHACKETS FUR FREQUENCY ANLI STEPS FOR THE SEARCH ROUTINE 
C**t* ~‘1 b F2=VALUES OF THE CHARACTEHlSTIC DETEHMINTE FOR WI & W2 

C**** r’r=NUMBLK OF EIGHNVALUES TO UE SEARCHED 
C**** w=GUESS FUR EIGEN VALUt 
C**** H=S’ rEP SIZE FOR SGAKCH 
C**** ~\c=FdU~b,Eii tJF THE FHIST MODE TU CALCULATE 
C**** NW=HIJMHEH OF NODES TO CALCULATE NUDES ON 
C**** l=iJUb:dtH UF MODES CALCULATED DURING PHOCESS 

RtAL*R ti,H,wl,W2,Fl,FZ,EL,EU,Y,X 
CUWMU~J/FACT/Y(B,l51) ,X(151) 
D~MEI~S~UN YYC151) 
l=O 
il1=w 
EL=. OOOlDO 
ELI=. OOlDO 

103 CALL FUN(rJl,Fl,EL,EU,NC,NN) 
101 W2=wltH 

CALL FUN(WZ,F2,EL,EU,NC,Nh) 
IFlFl*F2.LT.O1 GO T.u 102 
w1=w2 
Fl=F2 
G~J PL, 101 

102 Cc)biTIrJUE 
CALL UISLC(W~,F~,W~,F~,NC,NN~ 
CALL SECANT(~~l,Fl,WZ,FZ,NC,NN) 
CALL I)KuDE( YY, NN) 
dKLTE(6.200) W2 

200 Fl)HbiAT(2X,F20.10) 
WH~~E(~,~OO)(YYCJ),J=~,NN) 
l=ltl 
ws=h’2 
CALL CtJF(NC,YY,dS,NN,I) 
NC=lJCtl 
IF(l.tiE;N) GO TO 104 
LJl=HZtH 
GO TO 103 

104 ti(ETIJRtJ 
END 

SUUPilUTINE FttN(W,F,EL,EU,NC,NNl 
C THLS SUUR~IUTINE FIXLS ThE INITIAL VALUE FUH THE SOLUTILJN 
C ANU THEN CALLS SUU. . . HK~(HUIJGE KUTTA HOUTLNE) Tct DETERMINE SOLUTION 
C AFTER WtilCtI THIS SUU CALCULATES TtIK VALUE OF THE CHARACTERISTIC 
C DETbRMINAIIT. 
c*** ILL b EU =ERRbR BIJUNDS COR RUNGE KUTTA 
C*** iJC=WHlCtr F!IIDE, d0HhlNG Oh DETERRINti 
Cm* Y=FUlrDAfiENTAI, StJLUl’liJt~S TO DlFFERENTIAL EQN OUTPUT FROM HK7 
C*** C’=VALUE UF CHARACTERISTIC DETEHMINTE 

REALIll RK,W,F,EL,EU,Y,X 
CCJ~MU~J/FACT/Y(8,151),X(l511 
COhWclk/t:Gi3VL/HK 
hK=W 
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C INITlAL COriDITION TEST FUR EVEN OR ODD MODE 
GO 100 i=1,8 

100 Y(I,l)=O.DO 
IF(rdc.E0.2.~m.NC.EQ.41 GO TO 101 . 

.C INITIAL CrJEiDITJ13N FOR ODD MODE 
YI2,1)=1.D0 
Y(B,l1=1.00 
GO TO 500 

C INITIAL WNDITION FOR EVEN MODE 
101 Y(l,l)=l.DO 

Y(7;1)=liDO 
500 CALL RK7(8,NN,EL,EUI 

F=Y(3,NN)*Y(B,NN)-YI7,NN)*Yo 
RETUltW 
END 

SUHKiJUTlIJk: BISEC(X1,FlrX2,F2,NC,~N) 
HCAL*8 Xl,XZ,Fl,F2,FM,XM,EL,EU 
ccu=.o1 
EU= .OOlUO 
E;LZ .0001DO 

102 XH=(X1iX2)/2.00 
CALL FUtJ(XM,FM,EL,EU,NC,NN) 
lF(Fl*FM.LE.O.DO) GO TO 100 
Xl=XM 
F'l=C'N 
Gu TU 101 

100 XZ=XM 
FZ=Frl 

101 H~=oABS(Xl-X2)/X1 
IF(RE.GT.CCB) GU TO 102 
RETUHZJ 
END 

SUUKUUTINE FUNEV(K,X,Y,F) 
C THlS ~U~~K~IU'I'~NE SUPWHTS THE HUNGE KUTTA AbD DESCHlBES THE 
. 

s 
DlFC‘EH~;IJ'~IAL EQN 

C THIS SUB WILL NEED CHANGlNG IF SE1 IS TO HAVE DERIVATIVES 
C UK IF TttE T0RSIrtNAL KCJDES ARE BEING DETERHINED 
C**** K=UHDLtt IJF THE TAYLOR SERIS TERhS 
C**** F=DEKlVATIVES VALUES 
C**** Y=~'UI~IIA~IEIJ'I'AL SULUTlWJ 
C**** d=FHEQUEiJCY 

HEALSd F,Y,DRM,W,SEI,X 
[)114ENSlUri F(8,13),Y(B) 
CIJr,‘ll-t,t/EGNVL/k 
F (l,ti)=Y(21 
Fci!,t<)=Y(3) 
l=(3,K)=Y(4) 
~(4,nl=~f:~l(X)*~**2*Y(1)/SEI(X) 
F(S,K)=Y(61 
F(b,K)=Y(7) 
F(-/,K)=Y(H) 
F’(B,~)=D~~~(X)*H**~*YI~)/SEI(X) 
RcElUHIJ 
END 
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FU%CTIUN SEI(X) 
C*** X=DlSTANCE FROM SEMI SPAN 

lAPLICIT REAL*(I (A-H,O-Z) 
sc1=3000000060.D0 
IF(X.GE.ll.DO) SE~=300000000.00 
RCTURN 
END 
SLJt)H(JUTlN’IE SECANT(Xl,Fl,X2,FZ,NC,hN1 
HkAhC8 Xl,Fl,X2,F2,XMl,tP,DX,XM,f&CCS,EU,EL 
ILL=. 000000001u0 
ElJ=. 00~J000011~0 
ccs= iOGGlll0 
Xid1=Xl 
CALL FLJlJ(Xl ,F'l ,EL,EU,NC,NtJ) 
CALL t‘Iliu(X2,F;!,k:L,EU,NC,NIJ) 

103 FI'=(F2-Fl)/(X2-X11 
DA=-Fl/k'tJ 
XH=XltlJX 
CALL F~JL'I(XM,F~,EL,EU,IJC,~N) 
rlHlI'~‘;(6,260~Xl,F'l,X2,F2 

200 Fut?hAT(2X,2(D21.14,2X,D21.14,2X1) 
C IF(DAbS(XM-XMl)/XM).Ll'.CCS) GO TO 101 

lF(UAHS(FM).LT.CCS1 GO TO 101 
IF(F~I*Fl.LE.O.DO) GO TO 500 
Xl=XN 
F 1 = k' lb\ 
x rl 1 = x bi 
c;lJ TtJ 103 

500 x2=xPl 
k-2=k’M 
Xi.1 1 =XM 
Gu TO 103 

101 xz=xEI 
F2=FIy 
kRITL(6,201) X2,FZ 

201 FCJRhAT(2X,D21.14,2X,D21.141 
HETUHN 
Ek IJ 
SU~~KUIJT~PIE UtlUDtC(YY ,NN) 
Kr.AL*kI Y,X,Cl,C2,D 
C~~~I~IU~~/FACT/Y~~,~~~~,X~~S~) 
iJlP4ENbItJL.1 yY( 151) 
D=Y(l,NN)*Y(7,NN)-Y(SINN)SY(3,NN] 
Cl=Y(7,MN)/D 
C2=-Y(3,NN)/D 
DU 100 l=l,NIJ 

100 YY(l)=Cl*Y(l,I1+C2*Y(5,1) 
HETURf 
END 
FUI~CTION DAM(X) 
IFIPLICIT HEAL*8 CA-H,Cl-Z) 
UkM=130.D0 
IF(X.Lk:.I.DO) DRH=2205.D0 
~F(X.LE.~~.DO.A~JD.X.CE.~.C%~ DRH=2600.D0 
RETUKIJ 
END 
FUiJcTlc)r~ RM(X) 
K;vI=130. 
IF’(X.LE.4.) RM=2205. 
IF’(X.LE.11 ..AiiD.X.CE.B.) RK=2600. 
RET-URN 
t&D 
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100 

200 

C 
ct** 
c*** 
c*** 
c*** 
c*** 
c*** 
c*** 
c*** 
c*** 

c*** 

bO1 

600 

c*** 
500 

101 

102 

400 

FUIJCTIOrl SIMPCY,H,N) 
DIHEIJSIOt~ Y (N) 
Tl=O. 
Jl=tJ-2 
TZ=O. 
DU 100 1=3,Jl,2 
Tl=TltY(I) 
DO 200 I=Z,N,Z 
T2=YII)tT2 
SIfi:P=t!*(Y(l)tY(N)+2.*Tl+4.*T2)/6. 
RETllHld 
END 
SUtiHCIUTINE COF(N,YY ,wZ,NN,Il) 
TllIS S~I~~RDUTINE SETS UP THE FUNCTIONS FOR INTEGRATION 
rf=d~w /.II.JIJE THEN LATEH USED AS SCRATCHED ARRAY 
Ri’=Atft<AY UC’ MitvES 
d=YRE(JUr;NCY 
G1~1=CElil;itAlrJ2tCC~ MASS 
A &. ~=AKEI)DYIJANMIC CROSS TERMS 
Ku=rIrvC PLAN 
r’;=~lU~tfjt;R OF WOrJkt BEING WHOKEU OfJ 
I?iN=IlUMt~~~t< (JF IvtJIJES 
11 =luIJf4h,Eli IJF TIMES C(:IF CALLED 
CUt4t4~lr\r/DATAt,.A/RA ( 151) 
Crjf.~t-~u,r/‘rHAlJl/W(Sl ,GM(51 ,RPC5,151) rAC5.5) ,E)(5,5) 
IJIbltllrS1lJN YY(15l),XX(151),RRC151) 

HLAu UATA 
H=3J./(trI~l-1) 
1c’IIl.G’r.l) GU TO 500 
DU 601 I=l,NN 
xX(1)=(1-1 )*tl 
IrC:=iI-l 
tllll=U. 
Gid(1)=40000.0 
DO 600 l=l,fJN 
.rP(l,I)=l. 
A(l,l)=45.03M925 
tj(l,1)=52.939763 
CALCLtLr\TL dJtd DATA 
ClJlrTldlJr: 
IJU 101 I=l,lJN 
HP(N,I)=YY(I) 
DO lb2 L=l ,rrtr 
Al=k!!(XX(l)) 
Ul=kP(id,I)*Hl’(N,I) 
iYCl)=Al*isl 

cuI~J’L’lILIlr;. 

Gl~(~)=sInP(YY,H,NN)*2. 
‘w(d)=dl 
DO 104 J=l,N 
iJiiZ=N/2. 
flRl=J/2. 
ii2=N-2+NR2 
Yl=J-2~uRl 
IF(N2.EO.O.AND.fJl.E4.0) CO- TO 400 
lt;‘[J.r;cl.l) GO TO 400 
~~;(~J~.Eo.~.AND.N~.EO.~) GO TO 400 
A(h,J)=O.O 
B(bJ,J)=O.O 
Gu Tt, 105 
ClJr~Tlr4lJE 
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Do 103 .I=l,hN 
~Y(I)=RA[I)*RPCJ,I)*RP(NII) 

103 RHCI)=RA(Il*YY(I) 
A(N,J)=SIMP(RR,tt,NR3 
B(N,J)=SIMP(YY,H,NR) 

105. CUNTIrlUE 
104 CIJNTI.NUE 

,HETURN 
firu 
SUt3KOUTlNE STKK(NNI 

. 

E 
THIS SUBKOUTlNE IflITIALIZES THE COEFICIENTS FOR RK7 
FIXES TttE NUDES AIYD WING PLAN 

C**** Nd=I~UMtxH OF NODES 
C**** A,b,C = COEFFICItlTS FOR RK7 
C**** X=luUi)E VALUES 
C**s** HA=WING PLAI’I ARRAY 

HEAL*8 A,R,C,Cti,X,Y,DEL 
C~MM~I~/DA’~ARA/KA(~S~) 
Cu~~Mu~~/HtiC/A(l3),8~13,12~,C(13),CH(13) 
C~~~Murr/E’ACT/YC8,151),X(iSi~ 
DEL=33.DO/(iJiJ-13 
DEL2=33./(NH-11 
filJ=(~~~~-1)/3. 
HMl=(rrl~-1)/3. 
Du 100 J.=l,NN 
X(1)=(1-l)*DEL 
HAII)=l.O 
lU(l.GT.~~D)HA~I)=l.-.O27*(I-RM~~*DEL2 

100 CUkl’lIrttE 
A(l)=O.OLJO 
A(2)=2.UO/27.00 
A(3)=1.DU/9.D0 
A(4)=1.D0/6.DO 
A(5)=5.r~O/12.D0 
A~6)=1.00/2.00 
A(7)=5.lJO/6.D0 
A(8)=1.Do/6.D0 
A(9)=2.DO/3.D0 
AClO)=l.b0/3,DO 
A(ll)=l.DO 
At12)=O.D0 
AC13)=1.D0 
B~1,1~=0.000 
8(2,1)=2.00/27.U0 
D(3,1)=1.D0/36,DO 
t3(3,2l=l.D0/12.DO 
8(4,1)=1.I~O/24.D0 
8(4,2)=O.D0 
8(4,3)=l.D0/8,DO' 
D(5,1)=5.DO/12.D0 
8(5,2I=O.ODO 
BC5.31=-25.DO/16.D0 
~(5,4)=2S.DO/lb.D0 
D(b,i)=l.D0/20.00 
b(6,2)=O.Do 
B(6,3)=O.I)U 
0(6,4~=1.l~o/4.Do 
B(6,S)=l.Do/S.DO 
U(7,1)=- 25,UO/lOEI.D0 
8(7,Lj=O.D0 
U(7,3)=0.ODO 
8(7,41=125.l~0/108.00 
K(7,51 =-65.U0/27.D0 
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R(7,6)=125.DO/54.D0 
id(8,11=31.D0/300.D@ 
t5~ki,2)=0.ODO 
t3(8,3)=O.DO 
8(8,4)=u.lJo 
H(8,5)=6l.D0/22S;DO 
B(8,6) =-2.DO/Y.DO 
8(8,7)=i3.lJ0/906.D0 
B(il, 1)=2.DO 
8(9,2)=0.00 
6(9,3)=6.Do 
BCJ,4) =-53.00/6.DO 
ts(9,5)=764.DO/45.D0 
8(9,6)=- 107.D0/9.D0 
B~9,7)=67.D0/9O.D0 
R~9,01=3.D0 
8(10,1)=-9l.D0/108.00 
c~(16,2)=0.000 
t3(10,3I=O.DO 
u(10,4)=23.DO/108.D0 
B(lO,5) =-976.D0/135.00 
B(10,bl=311.D0/54.DO 
B(lO,7) =-19.00/60.D0 
8(10,8)=17.D0/6.D0 
8(10,9)=- 1.00/12.u0 
U(ll,l)=23ts3.D0/4106.DO 
B(11,2I=O.rJO 
B(ll,3)=O.D0 
8(11,4)=- 341.lJ6/164.b6 
8(11,5)=4496.fJG/1625.D0 
B(11,6)=- 301.00/82.D0 
B~11,7)=2133.06/4106.D0 
B( 11,8)=45.lJ6/82.1.J6 
h(11,9)=45.DO/164.D0 
8(11,10)=18.D0/41.0~ 
U(12,11=3.00/265.D~ 
ti(12,2)=0.00 
f~(12,3)=o.uo 
b(12,4l=O.IJO 
~112,5)=cJ.lJo 
B(lL,h)=-6.tJ0/41.D0 
H(12,7)=- 3,U6/205.D0 
U(12,8)=-3.DO/41.U0 
8(12,Y)=3.D6/4l.D6 
~(12,16)=h.D6X41.D0 
B(l2,11)=0,6DO 
8(13,1)=-1777.D0/41OO.D0 
B(13,2)=O.D0 
8(13,3l=O.D0 
8(13,4)=- 341.D0/164.D0 
~~13,5)=4496.DO/t’o25.DO 
ii(13,6)=- 289.00/82.D0 
~(13,7)=2193.00/4100.D0 
B(13,b)=Sl.WO/82.D6 
U(l3,9)=33.D6/164.D0 
~~13,10)=12.D0/41.D0 
u(13,11~=0.00 
ti~13,12l=l.D0 
C(11=41.D0/84O.D0 

.C(2)=6.D6 
c(3)=0.00 
C~4)=0.1)0 
cC5~=O,UO 
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C(6)=j4.DO/lOS.D0 
C(7)=Y.U0/3b.D0 
C(81=9.1)0/35.D0 
C(9)=9.u0/28O.D0 
Ct10)=9.D0/28O.D0 
C(ll1=41.D0/84O.D0 
c(12)=o.I)0 
c(131=o.Do 
CHll)=O.DO 
Crl(21=0.i~0 
Cti(3)=O.D0 
cH(4)=o.tJo 
CH(SI=O.DO 
CH(6)=34.00/105.D0 
Cfi(7)=9.D0/35.00 
CH(8)=9.DO/35.D0 
Cti~9)=9.00/2HO.DO 
C~i(1O)=Y.lJo/28o.rJo 
CH~11)=0.D0 
Cti~12)=41.D0/84O,DO 
Ct1(13)=41.D0/840,D0 
R&TURN 
END 
SUtiRUU’l’Ii\iE HK7(NS,NN,EL,EU) 

C444 RdiiGk KUTTA FEHLUEHG SEVENTH ORDER 
c*** EL=EKKL.lK l.JLIW~K f3Ul~I’lL) 
C444 EU=k.KKOb; UPPEK I3lIIIND 
C4*4 NS=i~Ulrll3EK IIF SYSTEM UF MN 
C4** Y=:i[JLU’~ltJi’i 

C444 dtr=I;UI*li3Ei! OF PTS TO Dt;TEKMfNE THE SOLUTXON 
C444 Rt,=LEI?IG’rtl (JF INTERVAL 

O~M~NSILI~~ Ylt(H) ,F(8,13) ,YX(81 
Dli’lCdSIlJl’i DY4(8) pDY5(81 ,Yl(8) 
CUk~,U~/~KC/A(13),~(13,12),C~l3),CH(13) 
cur~Mu~1/F~cT/Y~8,151~,X~151~ 
REAL*&J DY~,UYS,XX,YY,TH,A,B,C,F,DD~,DD~,~,~~,YO,CH,EL,EU,X,Y 
DU 101 I=l,NS 

161 Yf.t(I)=Y(l,ll 
iu’r=lJN-1 

C**4 M:;: UIJ LuOP INCHEAMENT TO EACH NClDL 
DU loo Il=l,NT 
NC=0 
H=X(Iltl~-X(111 
GLI TU 203 

207 L=L-1 
GIJ ‘I’(J 203 

206 L=Ltl 
tic=1 

203 DO 201 I=l,NS 
201 Yl(II=Yu(II 

TH=H/L 
C444 DO I,IJOP FClR STEPS BETWEEN NODES 

DLJ 206 I2=1,L 
C*** DETEKKINF; TIIE NEEDLD FUNCTION EVALURATION 

DU 306 K=1,13 
KM=K-1 
Du 301 J=l,NS 
~x=x(I1,tTtl*~l2-ll+A(K)*‘~tl 
YY(J)=Yl(JI 
1k’(liM.EO.O) GO TO 303 
DO 362 13=l,KM 

302 ~Y~J)=Ttt*~(K,I3)4F(J,I3)tYYtJ~ 

64 



303 CUNTINIJE 
301 CUIJTLNIJL 
300 CALL FlJfJEV(K,XX,YY,F) 

C*** DETLtiMIiiE SclLlJTfON VALUE FOR END OF STEP 
DC) SO0 l=l,NS 
DY4CI1=0.0 

500 DYSCIl=O.O 
DO 401 l=l,NS 
DO 402 K=l,l3 
UX4CI)=l-H*CCK)*F(I,K)+DY4(T) 

402 DX5CIl=TH*CHCK1*FCI,K)+UY5CI) 
401 CC~tbrlit’JUE 

C*** ERHJH AIJD STEP SIZE CCINTRCJL 
DD1=~Al~b(CDY4C11-DY50)/(DY4~1~tY1~11)) 
UU2=UA~~S((DY4C5)~UYSo)/(DY4(5)tYl~5))) 
lY(Dtil.lrT.EU.AND.DD2.LT.k3J~ GO TO 202 
GU ‘II3 206 

202 lF(D31.GT.EL.AND.D~2,GT,EL) GO TO 204 
IF(L.E(J.11 GO TrJ 204 
lFCNC.ElJ.11 GO To 204 
GU TO 207 

204 CuNTLhUE 
DU 105 l=l,tJS 

205 Yl~I)=Yl(I)tDY4(1) 
200 ClJliTIIJUt; 

Do 102 I=l,lJS 
Yucij=YicI) 

102 Y(i,iiti)=wcI) 
100 CClNTIrJIJE 

HtTUHN 
Ii;\1 0 
SU6kuUTINE lJ2 

C TtlIS PROGRAW Lik~T~~R~iN~,S THE AMPLITUDES OF THE UIF’FERLNT 
C HUUES TU A Sl~dlJSO[,AL GUST AT TlIE DIFF’ERENT STATIONS ALONG 
C T Ii E w i f1 G . S IJ ij . . . r)u TAKES CAR% UF INPUT AND OUTPUT PLlJS 
C SE'IS Up THE C(]t&FICltl;~bTs 'I'HAT ARE DHIVltdG F~U(JIJENCY ~NIJEFE~JDENT 
C SUL+K(J~JT~WE CIJEF SET UP '~IIE CuEFFLClEtJT ClkTRlX FOR EACH DRIVING 
C FkEUUENCY. WIIJLE Sub... GAUSS lxlti.5 HALF OF THE REDUCTION AtlD 
C SUB.,, &ACKS FlNISHES TH& HEDUCTIUN AND DUES BACK SUUSITUTION 
C FUR ‘I’HE DIFFERENT NUN-HUhtJGENOU$ VICTORS C!JRRESPONDING TO 

DIFFERENT GUST LUCATIOlJS 
;a** NiI=uur!tsER UF NUDM THE MdDES .ARE DETERMINE ON 
C*** ru’L=NUML\ER OF GUST LOCATION 

ti N = 1 5 1 
N2=20 
CALL LIUCNN,ld2) 
ti ki 1’ U K N 
ENU 

SUHH(JlITINE UO(NN,H2) 
C Ttils SUtill1JU’l’1N~ TAKES CARE (JF 1NPUT AND OUTPUT 
C AIJIJ PEHP’IJR~~S IJPERA’TIUNS THAT AHE DRIVING FREOUENCY 
C ;tI~UEI’L~JllLN’P, MEANING GAMA AND OMEG. 
C*** X=SULUTlOiJ, AIYPLITUDES OF MODES 
C*** HP=tiUllE ARRAY 
C*** X=GUST L[lCATIOIJ 
C*** A,U=AERUUYiJAFIIC CROSS PRODUCTS 
C*** W=1.lA'lLIl~AL, FHt4UENCIES OF MfJbt;;S 
Cd‘** G~~=GE~-JEI~ALI~.F~I~ dASS UC MODES 
C*** IJMEG=KEUUCEIS NATURAL FRbOlJEIJCY 
C*** GAI.IA=IJU~~ DIFlk;!JSlll~lklr Gbl 

C~M~UN/SOL/Yt20,5) 

65 



c50 
C 

c*** 

602 
601 

100 

2 
1 

C 
Cl01 
C 
C 
ClCij 
Cl02 

500 

CCIMMUII/TRAN~/RHK~;(~~) 
CUhMUn/THAN3/SY(37,19,51 
CO,%MUI~/EDAT/EEE 
CUkMuII/PAC/PT,bH,S,RtI,U . 
DIMEP~SIIJN XC201 
CUMPLEX Y, SY 
CUMPLEX CMPLX 
CunMUN/DAT/GAMACS) ,OMEG(Sl 
N=37 
FUtiMATC2X,E14.71 
WK~TEC~,SOI LEE 
Pl=3.14159 
tiR=lY.0/2..0 
S=YOU.O 
HO=. 67h5 
u=575.0 

PE,<k-l’lHM ARl’rilMATIC 
DU bO1 l=l,S 
CA~i~(IJ=CM(Il/CP~*RD*S*BH) 
U~lEG(I)=w(l)*bH/U 
JN=I 
DIJ 602 J=l,JN 
A(l,J)=ACI,J)*bR/S 
U(l,J)=b(I,JJ*BR/S 
ACJ,II=ACI,J) 
BCJ,II=HCI,JI 
COHTlNlJE 
C(JNTlfiUt: 
DO 500 1=1,37 
IF(I.LE.lO) RK=I/lOOO. 
IF(I.LE.19.ANU.I.GT.lOl HK=Cl-Y)/lCtO. 
IF(I.LE.28.AwD.I.GT.191 RK=CI-lRI/lO. 
IFCI.GT.29I RK=CI-27) 
DEL=33./CN2-1) 
NZW=NZ-1 
DU 300 Il=l,N2M 
XcIlI=DOL*cI1-.5I 
CALL CUtk’(RK,X,DkiL,NZM,NN) 
CALL GAUSS(S,NZti) 
CALL DACKSCNZK,Sl 
HHKCl)=RK 
DU 1 J=l,NZM 
DU 2 J2=1,5 
SYCl,J,J21=YCJ,JZl 
CONTIi~U~ 
CUN’IItIUE 
Wi~lTE(7.101) RK 
FDHMATCZX,E14.71 
DU 102 J=l,N2H 
nl~lTt(7,103ICYCJ,111,Il=l,5~ 
FCIKHATClX,3C2E13.611 
CIIKTIDUE 
CUNTII\UE 
HETURN 
StJttRUUTINE COEF(RK,X,DEL,N2M,NN) 

C THIS SUI~HIJUl!XtJE SETS UP COEFFICIENT MATRIX AND THE DIFFERENT 
C NaJil ttUhLIGt~~lOtlS VLCTURS. 
C** C=CL)EFFlCIENT MATRlX 
C** D=AHHAY Ok- tdlJiJ HOMC~GENWJS VICTOR 
C*** C=CUEFICIEtiT AWRAY 
C*** RK=REL’UCEU FREQUENCY 
C*** X=LuCuTIuk OF' GUST 

CUkMUN/LS/C~S,5) ,D(20,5) 
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Ci)t~llYUir/DAT/GAIlACS) ,tiHEG(S) 
CuM~~fl/'~tiANl/~~(S),G~(S),R~C~,~~l),A(~,~),8CS,S) 
CUMMU~I/FAC/PI,~R,S,R~,U 
DlhLdSIi~M X(ZO],S1(5,5) 
CO~iPLEX C,CI,D,CC,RKK 
CUKPLEX CMPLX 

C*** READ DATA 
CI=C~lPLXCO.~l.l 
DO 103 I=1,5 
UIJ 104 J=l,S 
C(l,Jl =-HK**2*A(I,J)+2*CI*RK*CCo*B(I,J) 
IP(I.iuE.J) GU Tfl 901 
C(X,J)=C(I,J)+GAMACIl*~OMEG~I~**2-RK**2~ 

901 SlCI,J)=CADSCCCI,Jl) 
104 CUIU'1'1IlUE 
103 CUNTINUE 

C DO YO2 1=1,5 
UU 106 J=l,NZM 
DU 16f~ l=l,b 
U(J,IJ=2*BR/S*RA(X(J))*RPH(IIXorNN)*RKKtRK)*D~L 

105 CUNTINUE 
106 CUiuTIl'JUE 

HETUHN 
END 
FUNCTIDN RPU(I,Y,N) 
COMMu~~/TRAN1/H(5),GH(5),kP~5,151)rA~~.~~,~~~,~~ 

DEL=33,/(N-1) 
ldn=AMS(Y)/Df%+l 
RS=ALS(Y)/DEL+I.-NH 
~p~~=~P(l,~~r~)+kS*(kPCl,NNtl~-RPCI,NN))/D~L 
IFCY.LT.O.0) GD TO 500 
Gu TU 600 

500 CIJ;JTIIIUF; 
IF(l.Eti.3.OH.I.EQ.5) HPH=-HPH 

600 HETUHN 
END 
FUi:CTI(Jd RACY) 
RA=l- .027*CAHS(YI-11.1 
lF(AHS(YI.LE.11) RA=l. 
kETUHId 
El! n 
Ful+CTlil~J RYlCXl 
Z=CX/3.)**2 
t~Yl=c~(((~.oo27873*z- .0400976)*Z+.31239511*Z-1.3164927)*Z 

++2.1692709)*Z+.2212091)*Z- .6366198+.6366199*X*ALOGo*RJ1(Xl 
+1/x 

RETURN 
END 
ClJM):LEX FUNCTION CCCRK) 

C TilIS FUhCTION CALCULATES THE THGODORSEN FUNCTIONS 
CUhPLEX CI 
CUlrPLCX CPPLX 
cl=cMPLXco.,l.) 
PJl=HJlCRK) 
PJO=HJOCkhJ 
PYl=HYltKK) 
PY6=HYOcHK) 
F=PJl*C'~JIiPYO~tPYl*~PYl~~YO) 
C=Frl*PYOtPJl*PJO 
w=~PJltPYO)**2t~PYl-PJOl**2 
CC=(FtCl*Gl/H 
HETUdN 
EiJP 
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C 

C 
C 

c**4 
c*** 
c*** 
c*** 

104 
103 

105 

CO~I'LEX F'UHCTIDEc RKKCKK) 
FUiiC1’lUtd DBTEI;(MINES THE GUST FURCE FUNCTION 

Cul~:PLEX CI ,cc 
CIJEPIJEX CFlPLIX 
cL=ci~PLx~o.,l.) 
PJL=HJl(RK) 
Rriti=CCCHh)*CRJOCRK)-CX*PJl1tCI*PJl 
KETUHri 
EiuO 
F'UNCTlON RJl(X.1 
Z=CX/3.)**2 
RJ1=CCCCCC.60001109*Z-.00~31761)*Zt.00443319~*Z-.03954289)*z 

+*.21093573l*Z-.56249985l*Zt.Sl*X 
R&TURN 
END 
FUNCTIIJN HJOCX) 
Z=tX/3.)**2 
HJo=(C(((.0602l*Z-. 00394441*z+,U4444791*2-. 3163866)*2+1.2656208)* 

+z-2.24999971*2+1.0 
Hk’CUHN 
END 
FUNCTIUlJ RYOCXI 
z=cx/3.1**2 
HYO=C(CC(-. 00024846*Zt.O0427916)*Z- .04261214~*2+.25300117)*Z 

+-.74350384)*2+.6055936)*2).36746691t.636619b*RJ0CX)*ALDG(X/2.) 
KETUH~J 
END 
Silt~li0UTlCIE GAlJSS(rJ,NZ) 

Ttlls ~~~I~H~~UTIXI:: DIJES GAUSSIAN ELIHlNATION FOR ONLY THE COEFFICIENT 
NkPliIX. SCALsKI) PARTIAL PIVOTItiG IS USED. 

CilMillIl;i/LF/Cl5,5),1)(20,5) 
Cs#;~~Jrr/rIV~JT/IPENC5) 
UJMErlSIlJli SC51 
CU14tJLEX c, 1) 

h=PlViJT INDEX 
C=Cuk'F'lClEtrT kRRAY 
O=l~il~.l~lfJCi-;El~lrJS VICTOR 
f~‘=PJLl;ii3k.H IJk’ tON 

UC) 103 l=l,N 
IPEN( 
511J=O. 
UCI 104 J=l,N 
l~'(CAUS(C(I,J)).GT.S(I)) SCI)=CAbSCC(I,J)) 
CuN'l'Il'luE 
drl=l,-l 
IlO 100 KK=l,NM 
IS=Khtl 
IP=lPEN(KK) 
J=KK 
CM=CAbS(CCfP,KK))/S(IP) 
DO 105 l=IS,N 
lP=lP6iJ(I) 
T=CAbS(C(IP,KK))/SCIP) 
lF(T.LE.CM) GO TO 105 
CH=T 
J=I 
CUii;I'llllJL; 
IPK=lPErl(J) 
lPEiJ(J)=IYI<r~(KK) 
lPErJ(KK)=IPK 
DO 101 lI=IS,N 

eicwitl~ I 
K=iPErilKK) 

C(I,Kh)=C(I,KK)/CCk,KKl 
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f:: 
100 

C 
C 
c**t 
c*** 

c*** 
c*** 

102 
101 

c*** 

104 
103 
100 

C 
C 
C 
c*** 
c*** 
c*** 

Do 102 J=lS,N 
c(l,J)=ccI,J)-C<I,KKl*CCKeJl 
CUNTICIUF; 
COPTlkUE 
RETURN 
CND 
SIJHHIJUT~~~~ BACKSCNl ,N21 

DIJ~S kcDUCTIuII Ofi THE NON HObWGENOUS VICTOR AND THEN DOES 
DACK SUtabITUTIuN. 
Rl=Nutttim uc’ rIuR HUMUGENUUS VICTOR 
N2=l~lkEhsIu1J OF NON WOHOCENOUS VICTOR 

C~;;l~lllFl/~1VUT/lPENCS) 
Cl,I~~MMuli/l.,S/C(5,5) ,DC20,5) 
CIJE~~~~~I~/SIIL/Y i 20,5) 
Cc.JRPLt:X C,D,Y 

K~=SIJLIJT~O~ XNuEX 
HEL)IJC'L'I~IN IJN NUN HUHUGENOUS VICTOR 

UIJ ?UO Kl=l,Nl 
ll-‘=LI’ElJ(l) 
Y(Kl,l)=I!(Kl,lP) 
IJU 101 KK=2,N2 
h=IPE.N (KK) 
T=@.O 
Ji\r=hK-1 
Du 102 J=l,JtJ 
T=CIti,J)*Y[Kl,J)tT 
YlKl,hK)=D[Kl,Kl-T 
Y(KI,~~~)=Y(K~,N~)/CCK,N~) 

tiACK ~UDSITUTION 
JJzd.2 
111-I 103 K=2,N2 
JS=JJ 
33=33-l 
KK=IPEN(JJ) 
T=O.O 
IN 104 J=JS,N2 
‘l’=CCnK,J)*YCKl,J)+T’ 
~(K~,JJ)=(Y(K~,JJI-T)/C(KK,JJ) 
CuidTlrIUE 
tICTUl3ld 
END 
SUUHL)UTINE D3 

Ttlld PROGRAM PERFORMES THE AHTHIMETIC TO DETERMINE WING TIP 
VELUCITY PudER SPECTRUM. SUB . ..SPkX PERFORMS THE CALCULATION 
AND FUN... ‘PSPEC EVALIIHATES ATMUSPHERIC TURBULENCE SPECTRUU. 
NZ=HUMbt;rt UF GUST STATIONS 
N=NlJHdER FUR DRIVING C’hEOUEirCIES 
TL=TIJRItULEiJCC; LENGTtt SCALE 

Clli~~MUN/THA~J2/HHK(37) 
Cum~ON/THAN~/SY(37,19,5) 
CUMM~N/EDAT/EEE 
CUlrPLEX SY 
CALL CljEY1 
CALL CUW2 
ttR=l9./2. 
DO 101 J1=1,5 
TL=bb.*C2**311 
N=37 
b422=20 
N22=Ei22-1 
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N2=N22*2 
WRlTE(7,202)EEE,TL,NZ 

202 F~~MAT[2X,~El=~,F10.1,'TL=',F10.2~'N2=~rI~~ 
i)lJ 100 I=l,N' 
iih=RkK( 1) 
ii~4U=tih*‘I’l~/BR 
ss=o.o 
u=s75. 
TS=T.SPEC(SS,RNU,U,TL) 
CnLL SPlX(RK,HR,TL,N2,I) 
WRlTE(7.201) RK,RH,TS 

201 FURMAT(2X,E14.7,2X,El4,7,2X,~l4.7) 
100 CUlvTlNUE 
102 CUNrIrJUE 
101 CONTIrrUE 

RL’I’UHN 
END 
SUBHuUT~bE SYEC(RK,RR,TL,NZ,IC) 

C TtllS SUUkuUTINE DETERMINES THE SPECTRUM OF THE WING 
C 'TIP VELoCITY. 
C*** RH=I’cl‘l’Al, AIHFLACdJE HESPl-IluSE 
C*** tiK=Rti~llCE; f REoUE:‘JCY dtr/U 
C*** kt=kl!?..jk’IJids~ TIJ GUST AT ONE STATION 
C*** N2=I;UMHlcH OF’ GUST STATIONS 

CLI~IM~I~/TRAI\~Z/HRK( 37) 
Cu~:HU~~/TRAN3/SY(37,1r,5) 
~~~~~~~.1’lS~lJb4 y(20,5) ,2(40) 
CiL)Nt’LtX Y,CI,Z,T,l’2,SY 

C*** RbAD b,\‘l’A 
CI=CMlJLX(O.,l.) 
Uif=19./2. 
1+22=;42/2 
DtL=olj./Ni! 
u=575. 
Dii 100 J=l,lJZi! 
IJO 2 J2=1,5 
Y(J,J2)=SY(IC,J,J2) 

2 CiJ~~‘rllrUE 
100 CIJNTIrliJL 

C*** UE’l’I-,kMIdI-; PLANES RESPDNSi: 
Od 101 J=l,N22 
T=O.O 
TS=U.(J 
Du 102 1=2,S 
‘TZ=Y (J,1) tT2 
lP(I.E(~.3.uH.I.EU.S) T2=T2=2.*Y(J,I) 

102 T=iIJ,l)iT 
Z[J)=T2*HK*CI 

101 Z(\it:i22J=CJ.*KK*T 
C*** UETtHi+Ii;b; PLNES TOTAL RbSONSE 

'I' T = lJ . 0 
Du 300 l=l,N2 
15=1-l 
T=O.O 
J i-l = N 2 - I .s 
DU 301 J=l,JN 

301 T=Z*REAL(Z(J)*CONJG(Z(J+IS)))+T 
SS=IS*uEL/TL 
Rl~U=KKITL/Hl~ 
IF(iS.EQ.O)T=T/Z, 

300 'IT=TSPEC(SS,RNU,U,TL)*T+TT 
ttt?='rT 
RETUHH 
EtJD 
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FUkCTl(lrr TSPEC(SS,RNU,U,TL) 
C THIS FUNCTION UETERHINES TURBU&NCE CROSS AND POWER 
c SPECTtiUfl FHIJM THE VIJIJ KkRPIAN SPECTRUM FUNCTION. 
C*** SS=SEtiEHATlOiJ DIVIDED dY TL(TURHLUNCE LENGTH SCALE) 
C*** KrllJ= ;*‘s’l’j,/U THE KtDUCtD C’RQUENCY OF TURBULENCE 
C*** U=FLlGHT Sl’EED UK 1YfiAl4 WINIJ SPASD 
C*** TL=TURtiUl,E,i'tCt LENGTH SCALE 

lF(SS.CQ.O.01 Gu TO SO0 
C Cf<iJSS SI'ECTHIJM 

Z=SS*sORT(1.+(1.339*RNU)**2)/1.339 
TSPEC=TI,*.lOB53/U*~4.78112*SS**(5./3.~/Z~*(5./6.~*BSLl(Z) 

t-sS**(11./3.)/z**(ll./6.)*eSLZ(Z)) 
KL'l'URN 

500 CUNTINUE 
C PIJ~~GH SYEC’l’KUM 

2=(1.339+RNlJ)**2 
'~SP~C=TL*(1+(~./3.)*Z)/(1+Z~**~11./6.1/3.14159/U 
HETUKN 
g;iIJ 

Ut~KUUTlNE CCJEFl 

: 
THIS SUBW~JUTII~E SETS UP TtIE CUEFFIENETS FOR THE POLYNOMIAL 
At'i'RUXIMA'l'IlJl1 FUR THE MODIC'RIED BESSEL FUNCTION OF THE 

C SkCCltrl~ k; ChL) 5/t1 IJKljER. 
Cu~i~1~~i~/KI3/A(lO),t)~lO),A2(10) 
k-=5./6. 
R(1)=1.0/.9405612296 
UlJ 100 1=1,9 

100 A(ltl)=A(I)/I/(Ftl) 
t-=1. G-F 
B(1)=1.6/5.56756615 
DlJ 101 I=1,9 

101 U(I+1)=~(I)/I/(Ft1-1.0~ 
5=4.*(5./6.J**2 
A2(1)=1. 
till 2ou 1=1,9 

200 A~(ltl)=A2(I)S(S-(2*l-l)**2l/b./I 
HETIJKN 
END 
FIJKCTIUN bSL1 (Z) 

: 
THIS' FIJrdCTlUN EVALUHATES THE MODlFRIED BESSEL FUNCTION 
OF 'IHt: SECOND KIND 5/6 ORDER 

CUMMUN/K13/A(lO),B(lO),A2(10) 
It‘(Z.Lt.2) GO TO 100 
Y=l./Z 
BSL1=SuRT(1.5707*Y)*EXl'C-Z)*POLY(A2,lO,Y) 
hETUHN 

100. Y=(z/2.0~**2.0 
RIP=(Z/2.0)**(5,/6.)*POLY(A,lO,Y) 
H1N=POLY(B,10,Y)/((Z/2.0)**(5./6.)) 
BSL1=(3.141/2/SIN(5.0*3.141/6.0))*(1~1N-RIP) 
RETURN 
ENIJ 
FUNCTION POLY(A,N,Z) 

C THlS FtJtrC'PlcJlJ DUES THE POLYNOHIiiL EVALUHATIONS 
DIMF:NSluN A(N) 
T=A(N)*Z 
NIu=d-2 
Du 100 I=l,rJN 

100 T=(I+A(ti-1))SZ 
PULY=TtA(l) 
RETURN 
END 
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FUI~ICTlUrU DSL2 (2) 
THIS FUNCTlDFi EVALURATES THE MOUIFRIED B&EL FUNCTION .OF THE 
SECURD KIND 11/6 ORDER. 

COid>IurJ/K23/EtlOl ,G(lO) ,EZ(lO) 
IF(z.Lt.2) GO TO 100 
Y=l./Z 
BSt,2=SOt~T(1.5707*Yl*EXP~-Z)*POLY(EZIIO.Y) 
RETLlH!J 

100 Y=(Z/Z.O)*r2.0 
kIP=~Z/2.0)**~11./6.)*PULY~E,lO,Y) 
H1N=PULY(G,10,Y)/~(Z/2.0)**~11./6.)) 
8SL2=(3.141/2/SIN~11.0*3.141/6.0))*~R1N-R1P) 
til-:TUHN 
EsJD 
SUHttUIJTIhE CUC:FZ 

C ‘ftl1.5 SIJHktIIJTItlE SETS UP THE CUEFFICIENTS FOH THE POLYNOMIAL 
C APPkOX1t4ATlrlfJS OF TlfL MODIFRlED 6,ESSEL FUNCTlUN OF THE 
C ShC111dl) KIrrU 1 l/h ORDER. 

;LJ;t;lJ;;K23/k-(lo) ,G[ 10) ,E2(10) 
= 

c***** UiJi ,.l;ER THE GAMEIA VALUE OF 1tDRDER ******* 
E(1)=1.0/1.724362254 
DU 100 1=1,9 

100 E(ltl)=E(I)/I/(F+I) 
c****r lJ,JE wll\iuS THE ORDER OF THE MODFRlED BESSEL ** 

F=l.O-F 
G(l)=l.O/(-b.68107938) 
DO 101 1=1,9 

101 G(I+l)=G(I)/I/(F+I-1.0) 
S=4*(11./6.)**2 
E2Cl)=l. 
Del 200 1=1,9 

200 E2(1+l)=ti2(I)*(S-(2*1-1)**2)/8./1 
HETUHN 
r;Qd D 
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APPENDIX B 

ESTIMATION OF WING STIFFNESS 

A major parameter of this study is the beam stiffness. Because 

structural information about the B-57 could not be located, this 

parameter had to be estimated. A static analysis is used in this appen- 

dix to estimate the beam stiffness. We assume that the deflection at 

the wing tip is one foot for a 10 g loading of the aircraft in wartime 

operation (meaning fuel tanks completely full and aircraft loaded with 

bombs both in the fuselage and on the wings). The wing is modeled as 

a cantilever beam. The loading on the wing, including structural weight, 

fuel and bombs, is depicted: 

3,625 lb/ft& 

650 lb/ft 

150 lb/ft Wing with -g 30( Ilb/ft 

I 
Wing fuel and bombs b I, Jincl 

I J 

0 11 22 25 29 33 % 
Distance from wing tip (feet) 

LOADING OF B-57 WING 
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The values for the loading diagram were determined from the 

Air Force Basic Flight Manual for the B-57. The loading can be written 

in functional form using singularity functions: 

R(Y) = -150<y>~ - 500~~ - 119 - 550~~ - 229 + 9oo<Y - 25>0 

- 3325~~ - 29>’ + Q<y> -1 

where Q represents a hypothetical force at the wing tip and is used for 

Castigliano's Theorem to calculate the deflection at the wing tip. The 

loading equation is integrated twice to give the moment equation: 

2M(y) = -15O~y>~ - 5oo<y - 11>2 - 55o<y - 22>2 + 9oo<y - 25>2 

- 3325<y - 29>2 + Q/2<y>O 

The form of the beam stiffness must also be specified: 

1OE 

--E EI 

6 i2 3’3 
Distance from wing tip (feet) 

FORM OF EI FUNCTION 
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I 

E is the characteristic 

analysis. The internal 

r 33 

beam stiffness and must be determined from this 

strain energy may be written: 

U -= 
n 

J 
& dy 

0 

= jo22&jy+/2;&Y 

where n represents the load factor, assumed to be 10 g. According to 

Castigliano's Theorem, the deflection is: 

I 

33 MS! 

I 

22 

I 

33 A- EN- 
- - _-_ _ 
h aQ 

+dy=; M*dy+L 
aQ 1OE M aM dy 

aQ 
0 0 22 

Substituting the equation for the moment and the derivative of the 

moment with respect to the hypothetical force, the equation becomes: 

AE - -- 
h 

5oo <y -- 
2 - 11>2 dx 

I 33 
+A 2 Y [ -150 - - - 

2 
<Y>2 -- 500 

2 
<y 11>2 2 550 <y 22> 

22 

+ 900 <y 
2 - 25>2 3325 - -2- <y - 29>2 

1 
dy 

Performing the integration, the equation is approximately: 

AC, g x 106 
h 

Assuming a one foot deflection at the wing tip due to a 10 g loading 
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we get E = 9 x 107. Therefore the beam stiffness distribution due to 

design characteristics is estimated as: 

EI = 9 x lo8 for Y 5 1111 

EI = 9 x lo7 for Y > 1111 
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